Noise Diagnostics of Scooter Faults by Using MPEG-7 Audio Features and Intelligent Classification Techniques

نویسندگان

  • Mingsian R. Bai
  • Meng-Chun Chen
  • Jian-Da Wu
چکیده

A scooter fault diagnostic system that makes use of feature extraction and intelligent classification algorithms is presented in this paper. Sound features based on MPEG (Moving Picture Experts Group)-7 coding standard and several other features in the time and frequency domains are extracted from noise data and preprocessed prior to classification. Classification algorithms including the Nearest Neighbor Rule (NNR), the Artificial Neural Networks (ANN), the Fuzzy Neural Networks (FNN), and the Hidden Markov Models (HMM) are employed to identify and classify scooter noise. A training phase is required to establish a feature space template, followed by a test phase in which the audio features of the test data are calculated and matched to the feature space template. The proposed techniques were applied to classify noise data due to various kinds of scooter fault, such as belt damage, pulley damage, etc. The results reveal that the performance of methods is satisfactory, while varying slightly in performance with the algorithm and the type of noise used in the tests.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchical Automatic Audio Signal Classification*

The design, implementation, and evaluation of a system for automatic audio signal classification is presented. The signals are classified according to audio type, differentiating between three speech classes, 13 musical genres, and background noise. A large number of audio features are evaluated for their suitability in such a classification task, including MPEG-7 descriptors and several new fe...

متن کامل

Using Wavelet Support Vector Machine for Fault Diagnosis of Gearboxes

Identifying fault categories, especially for compound faults, is a challenging task in mechanical fault diagnosis. For this task, this paper proposes a novel intelligent method based on wavelet packet transform (WPT) and multiple classifier fusion. An unexpected damage on the gearbox may break the whole transmission line down. It is therefore crucial for engineers and researchers to monitor the...

متن کامل

Fault Detection of Anti-friction Bearing using Ensemble Machine Learning Methods

Anti-Friction Bearing (AFB) is a very important machine component and its unscheduled failure leads to cause of malfunction in wide range of rotating machinery which results in unexpected downtime and economic loss. In this paper, ensemble machine learning techniques are demonstrated for the detection of different AFB faults. Initially, statistical features were extracted from temporal vibratio...

متن کامل

Determining the effective features in classification of heart sounds using trained intelligent network and genetic algorithm

Heart diseases are among the most important causes of mortality in the world, especially in industrial countries. Using heart sounds and the features extracted from them are among the non-aggressive diagnosis and prognosis methods for heart diseases. In this study, the time-scale, Cepstral, frequency, temporal and turbulence features are saved and extracted from the heart sounds, and then they ...

متن کامل

A Hierarchical Approach to Automatic Musical Genre Classification

A system for the automatic classification of audio signals according to audio category is presented. The signals are recognized as speech, background noise and one of 13 musical genres. A large number of audio features are evaluated for their suitability in such a classification task, including well-known physical and perceptual features, audio descriptors defined in the MPEG-7 standard, as wel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008